An unsupervised domain adaptation model based on dual-module adversarial training

نویسندگان

چکیده

In this paper, we propose a dual-module network architecture that employs domain discriminative feature module to encourage the invariant learn more features. The proposed can be applied any model utilizes features for unsupervised adaptation improve its ability extract We conduct experiments with Domain-Adversarial Training of Neural Networks (DANN) as representative algorithm. training process, supply same input two modules and then their distribution prediction results respectively. discrepancy loss find between modules. Through adversarial by maximizing minimizing results, are encouraged Extensive comparative evaluations conducted approach outperforms state-of-the-art in most tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adversarial Feature Augmentation for Unsupervised Domain Adaptation

Recent works showed that Generative Adversarial Networks (GANs) can be successfully applied in unsupervised domain adaptation, where, given a labeled source dataset and an unlabeled target dataset, the goal is to train powerful classifiers for the target samples. In particular, it was shown that a GAN objective function can be used to learn target features indistinguishable from the source ones...

متن کامل

Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training

To realize the full potential of deep learning for medical imaging, large annotated datasets are required for training. Such datasets are difficult to acquire because labeled medical images are not usually available due to privacy issues, lack of experts available for annotation, underrepresentation of rare conditions and poor standardization. Lack of annotated data has been addressed in conven...

متن کامل

Asymmetric Tri-training for Unsupervised Domain Adaptation

Deep-layered models trained on a large number of labeled samples boost the accuracy of many tasks. It is important to apply such models to different domains because collecting many labeled samples in various domains is expensive. In unsupervised domain adaptation, one needs to train a classifier that works well on a target domain when provided with labeled source samples and unlabeled target sa...

متن کامل

Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks

Significant advances have been made towards building accurate automatic segmentation systems for a variety of biomedical applications using machine learning. However, the performance of these systems often degrades when they are applied on new data that differ from the training data, for example, due to variations in imaging protocols. Manually annotating new data for each test domain is not a ...

متن کامل

Adversarial Teacher-Student Learning for Unsupervised Domain Adaptation

The teacher-student (T/S) learning has been shown effective in unsupervised domain adaptation [1]. It is a form of transfer learning, not in terms of the transfer of recognition decisions, but the knowledge of posteriori probabilities in the source domain as evaluated by the teacher model. It learns to handle the speaker and environment variability inherent in and restricted to the speech signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2022

ISSN: ['0925-2312', '1872-8286']

DOI: https://doi.org/10.1016/j.neucom.2021.12.060